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Abstract

The analytical solution of the Mean Spherical Approximation for the case of equal

size ions and different size solvent is reexamined using only two parameters : a polar-

ization paxameter A and a screening parameter r. We show that the ion dipole cross
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energy parameter, which in previous work was obtained solving a cubic equation, can

be obtained from a linear algebraic equation. Therefore, the inverse problem of cal-

culating the reduced charge parameter do and the reduced dipole parameter d2 from

A and r is reduced to a system of two equations: a cubic for do, and a linear for d2 .

Simpler expressions for the thermodynamic parameters are also obtained.
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1 Introduction

Considerable advances have been made over tha last thirty years in the statistical me-

chanical description of electrolyte solutions in molecular solvents. This work has been carried

out using different approaches: computer simulations,' 2 accurate integral equations, such as

the hypernetted chain equation,' which were applied to this case by Patey and coworkers 4"5

and simple analytical theories, based on the mean spherical approximation (MSA). ' The last

approach is attractive for chemists examining the thermodynamic properties of electrolyte

solutions not only because the model gives rather simple analytical results but also because

it shares with the Debye Hfickel theory the remarkable simple description in terms of a single

screening parameter for any arbitrary mixture of electrolytes, and has the added bonus of

satisfying the large charge, large density limits of Onsager. 'P ' In the present work we consider

a mixture of a salt of equal size hard sphere ions, and a solvent which is represented by a

hard sphere of different size with a permanent point dipole. Early work at the non-primitive

levels' 1o was restricted , for technical reasons, to the case of ions and solvent of equal diam-

eter. The extension of the analytical result to mixtures of arbitrary size ions and solvents

is considerably more complex 11- 14 but the remarkable fact that the excess ionic properties

depend on a single scaling, Debye-like parameter is still retained by this approximation. The

equations for the most general case appear to be rather complex, but the semirestricted case

of equal size ions of diameter a, and a different size dipole of diameter a, is both interesting

and tractable. In recent years'- it has become apparent that the underlying structure of the

MSA consists of a number of scaling parameters which is equal to the number of independent

interaction parameters of the problem. For example, for the ion-dipole mixture there are

only two interaction parameters, the charge and the dipole moment, and correspondingly.

there will be only two scaling parameters, r, for the charges, and A for the Aipoles. For the

primitive model of ionic solutions in the semirestricted case16the parameter r is determined

from the equation
____ : 4l' 2  

(1)

where tho ionic charge is z~e and number density pi = A/V, where , is the number of ions

and V is the volume of the system. The temperature is T tnd Boltzmann's constant is ky.

For the case of only one
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ion diameter o, the screening parameter r is related to the Debye screening parameter

K)47r2

fwk uT S

by

(1 + 217a) = (1 + 2a) (3)

For a system of spheres of diameter a. and a permanent dipole moment Yo the MSA result

can be expressed in terms of a single parameter A . Following Wertheim,17 we have

=(A + 2 ) (1 - ) (4)
9 (w

where

3kyT

and p, is the solvent number density. Furthermore, the MSA dielectric constant Ew of the

solvent is given by
= A2(A + 1)4 (6)

16

As has been often done in the literature, the parameter A can be computed directly from

the dielectric constant ew using the above cubic equation. This parametrization defines ait

effective polarization parameter.

This paper is the continuation of previous work of Blum and Wei"' and of Blum

and Fawcett. 2 The notation of Blum and Wei will be used throughout. We show that for

the semirestricted case of the ion-dipole model of ionic solutions an ion-dipole interaction

parameter b, is obtained from a linear equation whic is also a fuction of the reduced charge

do. In our previous work l " ' this parameter was obtained as a solution of a cubic equation

with coefficients that depend on r, the dielectric constant fw and A. When a. - 0 we

recover the primitive model MSA equations, and the hydration thermodynamics is that of

the continuum model as described by the Born equation. In the next section we discuss the

new form of the MSA equations for the semirestricted case of equal size ions and a different

size hard dipole. The thermodynamics for this system is derived in the final section using

the expressions of Vericat et al."8 and of Blum et al.12
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2 Theory

We summarize the results of previous work.11", " 2 We use the invariant expansion

formalism, 2u in which the total pair correlation h(12) is expanded in terms of rotational

invariants

h(12) = Ot°(,r,,) + ho"1(r* ),°1 + ho(,..) 1Ul + + A"2(,)$" 2  (7)

where hmnl(r1 2) is the coefficient of the invariant expansion, which depend only on the

distance r12 between spheres 1 and 2. The rotational invariants ,,,,, depend only on the

mutual orientations of the molecules. For the present case the relevant correlation functions

are

* ion-ion:

h,,(,) = (1/2) [h w(r) - h'(r) (8)

* ion-dipole:

h,,,(r) = (1/2) [h+,(r) - h_,,(r)I (i. f) (9)

* dipole-dipole:

hnn(f') = nn -

+ V 1, 2 (Y.) [3(i " Ai)(r. /12) A- 1] (10)

where A is the unit vector in the direction of p. The solution of the MSA is given in terms

of the 'energy' parameters

* ion-ion:

bo = 27rpi 0 drh,(r)ra (11)

" ion-dipole:

b 1 = 2r P T drhi,(r)aia. (12)

* dipole-dipole:

= 3 r p ~ dr h1(t)ca5 (13)
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which, as will be shown below are proportional to the ion-ion, ion-dipole and dipole-dipole

excess internal energy.1' In the MSA they are functions of the ion charge and the solvent

dipole moment, through the parameters

47re 2 
2 2= -- az, (14)

3

and

d= 47rp.u (13)
2 3ksT

These parameters are required to satisfy the following equations'"

(,1 + a2 = do (16)

dod2 = a,Km - a2[1 - K11] (17)

g,2u + [1 - gii]2 = y2 + dr (18)

Since

+(o (a./a,)- A [1 + aiA] (19)

and

1 - Ki= -a 2biA(o./2u,)] (20)

with

A = (1/2)(1 + bo) +/(a16a ) (21)

can be rearranged to

a, + a2 = d2(22)

ab, a23 = dAA (23)

2ci,[ b f A; (24)
2a, ] +' .  1 ,y +

where we have used the definitions
1

a, = [A - 20 6Di] (25)

- b [A/2 + D.-] (26)a = 362D .a

A 1 [bt+ - (27)
2- 12a



z += + 3 (28)
4

and

A=d 2  i l+ b+ Ias (29)

which can also be written r2

A d2 - doA 2/3a, (30)

where

V = 1 + B, (31)

with
b b (A + 2) 2  (32)

36

Also

= 1 - N/6 (33)

,33 = 1 + bN 13 (34)

Ow1 = 1 + b.,/12 (35)

It will turn out convenient to use the parameter

A = (36)
036

Then

+21 (37)A, =6+ 2

A=3-A (38)

3

= A +2 (39)

/Y33 A(A + 2) (40)
7,4 -b=  3

4(A + 2)(41)
Y1 = 3= 3(A + 1)2

Futhermore we have the dielectric constant 7

w - 2= A2 (A +1) 4  (42)
Yi 16
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As has been previously shown 19 '1-1 4 Eq.(23) can be replaced by

a2bi, + aij = doAy, (43)
2ai

which together with Eqs.(22) and (24) form a system of three equations for the three un-

knowns bo, bl, 2. However these equations are still complex. A much simpler set of equations

is obtained when we use the proper scaling lengths.1 ," We define r through the relation

_ _____ 1 o 1] 2B ,A
+ - (44)

or
- -B(1 +BI )

_ ai (45)
- (1 + bo BI~3ff ')

and A fiom

A (46)

After some long but straightforward algebra we get
2 /36Fo,D ' '  (47)

a, = ruFi(1 + Fa) =

a2 = -al b-, 2Dr' (48)

where now

Dy. - (49)2(1 T raj)

where we have defined the convenient parameter (,

Fai r aj50+ ro, + 1 + ra, +

where

(51)

A =((1/2) 1 + b + (/2) + (52)

and

+ =1 + bf(A +2)2 (53)2) +4-6 36

Furthermore we get for Eq.(29)

A = d2- do(L,)(12 )( 2 +  (5./4)

• 12f 1 -, ) (54)
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Also

d1+ (55)

1 -1,, = (yu/D) 1 + 3(()r , 1 + (1 + ra,) ), i (56)
b, 3Fa,,)3

Kju= bD (l +F a) 1+ (57)

With this the boundary condition

bido d.2 = 2B [du(Oa/a,)A + (A/C.)(1 + (i ,)] (58)

the MSA equation (43 )reduces to

2ro,(1 + roi) [1 - (V - 1)(&/(,)] = dD' (59)
V :W

together with the cubic equation for the ion-dipole parameter bi

V2 [(. + D - 1] = EwKi - (V - 1)I" (60)

These can be written in a more convenient form using Eq.(59)

2ra,(1 + raj) [1 - Bj(&/,)] = do(l + B1 )2  (61)

Eq.(60) is a cubic equation in B,

(1 + B1 )2 [c + Bl] = EW [K. - B lJ (62)

Eliminating (1 + B1 )2 between these two equations, we get a linear expression in B, (in place

of the cubic"), which is easily solved to yield

B,= '[1 - Ls] (3

1/, (63)

This is one of our main results: The parameter b, is now explicitly obtained as a function of

the other parameters of the problem. where

V, = 2Fa,(1 + ]Pa,) (64)

Furthermore

1B = -1, - + V"'C') (65)
V9 + Us



c+,6- C(+.) (66)

1- ~/,)B =v( + Ui. (7
(1 + UOc

V2 [1 + B1]2 =,EV 2(+~~ (68)
~+

so that from eq.(61) we get

2ro,(1 + ro) v(1 + d) / I/,Ew [14v - ~ + V422 (69)
vi + Ui vi + , js

Substituting

viw(l + Ui(V + 6(i = (-vi - Us- 0 + vi(.)'

We have that

1+ ~ =(1 + &0)(+ rai)L'a, 7
1 + s 1 ra,+ i/& M

Vi+Ui -rai i F (1 + L'ai)(1 + roi + 1/&)](1
£4 + ra i+'*+ 17&k, doVw (

V. +U. v..'- (1 + c)(1 + raira 1 2(1l+ 2roi+lM] (7 2)

Finally, after some lenu+b algebra

4(1 + ,)(2 + 2&, + 4ros , + do-V/w(,2)2

=4Fr7,v~w(1 + roi ,)(1 + i + roi,,

(2 + 21'o, + 2 , + 4r, + 2FvcT , + do-,Ew ;) (73)

which can be written in the form

d[do+2(1 + 1/Ki + 2roi)/(V/,E)I
d0  (1 +1k, + rai)

= 4m (' + r!ii [do + 2(1 + rai)(1 + 1k, + rai)/(&,vEw)] (74)
1 + &

This is a cubic equation for the parameter do.

do[do + c1]2 = C2(do + c3) (75)

with
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cl = 2 (1 + 1/() (76)

= 4 (ra) (1 + ro, ,) (77)4(t1 + ,)

C = 2
r a i(1 + ro,) (78)

A second equation is laboriously obtained from Eq.(18)

2 [ 1 ,-.112
Y- 1 + (D/2).M, 1 +

0 (1 + r,)(1 + r, 3o,)g

+ YO'- Ma (1Y+ 1 + d+ (79)

where

Mi = 2rai(1 + ro,) do(z (80)

y- (81)

From these two equations the inverse problem can be solved explicitly, that is, to compute

the parameters do and d., from r and A. When the solvent diameter o, goes to zero we

recover the correct primitive model result

_d 0
2Fa,(1 + ror,) = do (82)

which is equal to the primitive model MSA Eq.(3) in the form

2ro(1 + ro) = ra (83)

with the MSA Wertheim dielectric constant Ew.

3 Thermodynamics

The excess internal energy for the semirestricted case of equal size ions and a different

size solvent is similar to the completely resticted case of all equal size spheres. The thermo-

dynamic relations for the completely restricted case were first derived by Vericat and Blum. IS

The generalization of the thermodynamic expressions to the completely general case and the
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semiresticted case were obtained later by Wei and Blum. r2 We use the reduced quantities of

the second work. The internal energy is

= -2 dod b, -2 1

the Helmholtz free energy is obtained using the method of H0ye and Stell 1

a.A/(VkBT) = (2- 2 - 2dodbb - X) (85)
12-r

I= + +i] (Qi)] +. *dJ+()3 [[d + 2(q)2] (86)

It will be convenient to write the Helmholtz free energy as the sum of a internal energy

and an entropy term

A/(VkBT) = E/(VkyT) - S/(Vku) (87)

where
- orS/(VkB) = 12 -bo+4(i)dod.b, + 6 (L) d~b. - J'] (88)

Using the results of Wei and Blum,' Eqs.(16-20) and

l-b2/24 (A - 1)(A + 3) (89)
q (1 + b-./12) 2  (A + 1)2

Qi -a, - 2 + /36/D-.' - + Bi] (90)

Q'd =bi [/3 + a,(3A - 2Db)]

Q -d b(1 + roi)(1 + roi,) (91)

Q1a =2 [(/A)( (2-.) bi a,(3A - 2D.)) - 1]

After some lenghty calculations we get

A3(1+(1 +1/A)] \193
-S/(Vku) = 1 [r3 +  (I+ 1-3)] + T'/au (93)

where the coefficients T' is a second order polynomial in the variable

B_= M, (94)D 2(1 + ro,,)(1 + (1 + ro,),)i
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where M, has been defined in eq.(80). When this variable is zero then the system behaves

like a sum of a primitive model electrolyte and a dipolar fluid. Our expressions reproduce

the known results2 25 for the ionic part. For the dipolar part we get a new and simple

expression, which, however, is in full agreement with the result of Rushbrooke et al.26

We have
T'= (1/127r)[Tb + Tj] (95)

with

Tb =Tbo +TbI +Tb 2  (96)

T= - [.] 4(ra,)3 (1 + For,) [2- I/c, + B1 + (I'o')(I + B1 /c,2) (I + (1 + a,) -

(97)

Tb =16 B, ro,(l + ro,) + +ro(1+Bl1 (/C) l+(1+ra,)0b*rl (98)
1)21 1 3a,/J

a') ( ) 6 -[d 2 + y2 - y:11

B,2~!)~ [(13&, i + Y)2+Y [2,+ BI-y] (99)

where

= -1+(,/,r, k 1+r,

Furthermore

Tj = Tio + Ti 1 + Tx2  (100)

T = 4 [.(1 - rTa:)[2r 2o + Bi(1 + r'oa:)] (101)

T L= 4 1 + ( o r' ) )[ B] A2(1 + rai)2(1 + rao,) 2  (102)

=a(I =)- [[QOd] 2 _ 4(A2 - 1)21

-4 (L' ) [A2 - (rtC)][(A2 - 1)(1 + )-B(i-(o/c2) (103)

The excess pressure can also be computed.21 The expression is12

P/ksT = S/VkBT (104)

13



Then,

G = E (105)

still holds.

The thermodynaamic expressions for the infinite dilution limit 1 was discussed by Chan

and colaborators,"7 and in a more comprehensive way by Garisto et al."s Our expressions

agree with these works in that limit. A more detailed discussion of the applications of these

results will be published in future work.
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